Понятия со словосочетанием «минимальный элемент»
Связанные понятия
Вполне упорядоченное множество — линейно упорядоченное множество M такое, что в любом его непустом подмножестве есть минимальный элемент, другими словами, это фундированное множество с линейным порядком.
Биекция — это отображение, которое является одновременно и сюръективным, и инъективным. При биективном отображении каждому элементу одного множества соответствует ровно один элемент другого множества, при этом определено обратное отображение, которое обладает тем же свойством. Поэтому биективное отображение называют ещё взаимно однозначным отображением (соответствием), одно-однозначным отображением.
Со́бственный ве́ктор — понятие в линейной алгебре, определяемое для произвольного линейного оператора как ненулевой вектор, применение к которому оператора даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение. Скаляр, на который умножается собственный вектор под действием оператора, называется собственным числом (или собственным значением) линейного оператора, соответствующим данному собственному вектору. Одним из представлений линейного оператора является квадратная...
Полунорма или преднорма — обобщение понятия норма; в отличие от последней, полунорма может равняться нулю на ненулевых элементах пространства.
В теории категорий есте́ственное преобразова́ние предоставляет способ перевести один функтор в другой, сохраняя внутреннюю структуру (например, композиции морфизмов). Поэтому естественное преобразование можно понимать как «морфизм функторов». Эта интуиция может быть строго формализована в определении категории функторов. Естественные преобразования — наиболее базовое определение в теории категорий наряду с функторами, поэтому оно появляется в большинстве её приложений.
Подробнее: Естественное преобразование
Слабая сходимость в функциональном анализе — вид сходимости в топологических векторных пространствах.
Двойственное пространство (иногда сопряжённое пространство) — пространство линейных функционалов на заданном векторном пространстве.
Одночлен (также моном) — простое математическое выражение, прежде всего рассматриваемое и используемое в элементарной алгебре, а именно, произведение, состоящее из числового множителя и одной или нескольких переменных, взятых каждая в неотрицательной целой степени .
Резольве́нта — один из важных инструментов гомологической алгебры, в частности служащий для вычисления функторов Ext и Tor.
В алгебраической геометрии дивизоры являются обобщением подмногообразий некоторого алгебраического многообразия коразмерности 1. Существуют два различных таких обобщения — дивизоры Вейля и дивизоры Картье (названы в честь Андре Вейля и Пьера Картье), эти понятия эквивалентны в случае многообразий (или схем) без особенностей.
Подробнее: Дивизор (алгебраическая геометрия)
Числовая последовательность (ранее в русскоязычной математической литературе встречался термин вариа́нта, принадлежащий Ш. Мерэ) — это последовательность элементов числового пространства.
В математике квадра́тная ма́трица — это матрица, у которой число строк совпадает с числом столбцов, и это число называется порядком матрицы. Любые две квадратные матрицы одинакового порядка можно складывать и умножать.
Важнейшими с точки зрения приложений характеристических функций к выводу асимптотических формул теории вероятностей являются две предельные теоремы — прямая и обратная. Эти теоремы устанавливают, что соответствие, существующее между функциями распределения и характеристическими функциями, не только взаимно однозначно, но и непрерывно.
Подробнее: Прямая и обратная предельная теорема
В математике, симметрической алгеброй S(V) (также обозначается Sym(V)) векторного пространства V над полем K называется свободная коммутативная ассоциативная K-алгебра с единицей, содержащая V.
Подробнее: Симметрическая алгебра
Точный функтор — функтор, который переводит точные последовательности в точные. Точные функторы удобны для вычислений в гомологической алгебре, поскольку их можно сразу применять к резольвентам объектов. Бо́льшая часть гомологической алгебры была построена для того, чтобы сделать возможной работу с функторами, которые не являются точными, но их отличие от точных поддаётся контролю.
Характеристи́ческая фу́нкция случа́йной величины́ — один из способов задания распределения. Характеристические функции могут быть удобнее в тех случаях, когда, например, плотность или функция распределения имеют очень сложный вид. Также характеристические функции являются удобным инструментом для изучения вопросов слабой сходимости (сходимости по распределению). В теорию характеристических функций внесли большой вклад Ю.В. Линник, И.В. Островский, С.Р. Рао, Б. Рамачандран.
Кубический сплайн — гладкая функция, область определения которой разбита на конечное число отрезков, на каждом из которых она совпадает с некоторым кубическим многочленом (полиномом).
В линейной алгебре положи́тельно определённая ма́трица — это эрмитова матрица, которая во многом аналогична положительному вещественному числу. Это понятие тесно связано с положительно определённой симметрической билинейной формой (или полуторалинейной формой в случае с комплексными числами).
Топологическая энтропия — в теории динамических систем неотрицательное вещественное число, которое является мерой сложности системы.
Ковариацио́нная ма́трица (или ма́трица ковариа́ций) в теории вероятностей — это матрица, составленная из попарных ковариаций элементов одного или двух случайных векторов.
В линейной алгебре линейная зависимость — это свойство, которое может иметь подмножество линейного пространства. При линейной зависимости существует нетривиальная линейная комбинация элементов этого множества, равная нулевому элементу. При отсутствии такой комбинации, то есть, когда коэффициенты единственной такой линейной комбинации равны нулю, множество называется линейно независимым.
В вычислительной математике одной из наиболее важных задач является создание эффективных и устойчивых алгоритмов нахождения собственных значений матрицы. Эти алгоритмы вычисления собственных значений могут также находить собственные векторы.
Подробнее: Алгоритм вычисления собственных значений
Ме́тод обра́тного преобразова́ния (Преобразование Н. В. Смирнова) — способ генерации случайных величин с заданной функцией распределения, путём модификации работы генератора равномерно распределённых чисел.
Конъюнкти́вная норма́льная фо́рма (КНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид конъюнкции дизъюнкций литералов. Конъюнктивная нормальная форма удобна для автоматического доказательства теорем. Любая булева формула может быть приведена к КНФ. Для этого можно использовать: закон двойного отрицания, закон де Моргана, дистрибутивность.
В теории категорий,
подфунктор — специальный тип функтора в Set, использующий определение подмножества.
В математике (общей алгебре) многочлен от нескольких переменных над полем называется гармоническим, если лапласиан этого многочлена равен нулю.
Подробнее: Гармонический многочлен
Лине́йная комбина́ция — выражение, построенное на множестве элементов путём умножения каждого элемента на коэффициенты с последующим сложением результатов (например, линейной комбинацией x и y будет выражение вида ax + by, где a и b — коэффициенты).
Усло́вное распределе́ние в теории вероятностей — это распределение случайной величины при условии, что другая случайная величина принимает определённое значение.
Многоме́рное норма́льное распределе́ние (или многоме́рное га́уссовское распределе́ние) в теории вероятностей — это обобщение одномерного нормального распределения. Случайный вектор, имеющий многомерное нормальное распределение, называется гауссовским вектором.
Гомеоморфи́зм (греч. ὅμοιος — похожий, μορφή — форма) — взаимно однозначное и взаимно непрерывное отображение топологических пространств. Иными словами, это биекция, связывающая топологические структуры двух пространств, поскольку, при непрерывности биекции, образы и прообразы открытых подмножеств являются открытыми множествами, определяющими топологии соответствующих пространств.
Теорема об обратной функции даёт достаточные условия для существования обратной функции в окрестности точки через производные от самой функции.
Ультрапредел — конструкция, позволяющая определить предел для широкого класса математических объектов.
В теории категорий моноидальные функторы — это функторы между моноидальными категориями, сохраняюющие моноидальную структуру, то есть умножение и тождественный элемент.
Подробнее: Моноидальный функтор
Направленное множество в математике — непустое множество A с заданным на нем рефлексивным транзитивным отношением ≤ (то есть предпорядком), обладающее дополнительным свойством: у любой пары элементов из A есть верхняя грань в A.
Циклический ранг ориентированного графа — мера связности орграфа, предложенная Эгганом и Бучи. Это понятие интуитивно отражает, насколько близок орграф к направленному ациклическому графу (НАГ, en:DAG), когда циклический ранг НАГ равен нулю, в то время как ориентированный орграф порядка n с петлями в каждой вершине имеет циклический ранг n. Циклический ранг ориентированного графа тесно связан с глубиной дерева неориентированного графа и высотой итерации регулярных языков. Циклический ранг нашёл применение...
В математике централизатор подмножества S группы G — это множество элементов G, которые коммутируют с каждым элементом S, а нормализатор S — это множество элементов G, которые коммутируют с S «в целом». Централизатор и нормализатор S являются подгруппами G и могут пролить свет на структуру G.
Бу́лева фу́нкция (или логи́ческая функция, или функция а́лгебры ло́гики) от n аргументов — в дискретной математике — отображение Bn → B, где B = {0,1} — булево множество. Элементы булева множества {1, 0} обычно интерпретируют как логические значения «истинно» и «ложно», хотя в общем случае они рассматриваются как формальные символы, не несущие определённого смысла. Неотрицательное целое число n называют арностью или местностью функции, в случае n = 0 булева функция превращается в булеву константу...
Топологическое векторное пространство, или топологическое линейное пространство, — векторное пространство, наделённое топологией, относительно которой операции сложения и умножения на число непрерывны.
Проективная группа — группа преобразований проективного пространства, индуцируемых линейными преобразованиями соответствующего векторного пространства. Её элементы называются проективными преобразованиями — они обобщают проективные преобразования проективной плоскости. С матричной точки зрения проективная группа — это группа всех невырожденных матриц с точностью до скалярных матриц.
Вложение Куратовского — определённое изометрическое вложение метрического пространства в банахово пространство непрерывных ограниченных функций на нём.
Коалгебра — математическая структура, которая двойственна (в смысле обращения стрелок) к ассоциативной алгебре с единицей. Аксиомы унитарной ассоциативной алгебры могут быть сформулированы в терминах коммутативных диаграмм. Аксиомы коалгебры получаются путём обращения стрелок. Каждая коалгебра c дуальностью (векторного пространства) порождает алгебру, но не наоборот. В конечномерном случае дуальность есть в обоих направлениях. Коалгебры встречаются в разных случаях (например, в универсальных обёртывающих...
В классической механике ско́бки Пуассо́на (также возможно ско́бка Пуассо́на и скобки Ли) — это оператор, играющий центральную роль в определении эволюции во времени динамической системы. Эта операция названа в честь С.-Д. Пуассона.
Подробнее: Скобка Пуассона
Теорема об огибающей (англ. envelope theorem) — результат о дифференцируемости целевой функции в оптимизационных задачах с параметром. Теорема гласит, что при варьировании значения параметра, изменение целевой функции (в определённом смысле) не обусловлено изменением оптимума. Теорема важна для сравнительной статики в оптимизационных моделях.
Диагональная матрица — квадратная матрица, все элементы которой, стоящие вне главной диагонали, равны нулю.
Факторкольцо́ — общеалгебраическая конструкция, позволяющая распространить на случай колец конструкцию факторгруппы. Любое кольцо является группой по сложению, поэтому можно рассмотреть её подгруппу и взять факторгруппу. Однако для того, чтобы на этой факторгруппе можно было корректно определить умножение, необходимо, чтобы исходная подгруппа была замкнута относительно умножения на произвольные элементы кольца, то есть являлась идеалом.